

TOPICAL PAST PAPER QUESTIONS WORKBOOK

AS & A Level Mathematics (9709) Paper 1
[Pure Mathematics 1]

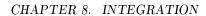
,

May/June 2015 - February/March 2022

Chapter 8

Integration

 $441.\ 9709_m22_qp_12\ Q\!:\, 1$ A curve with equation y = f(x) is such that $f'(x) = 2x^{-\frac{1}{3}} - x^{\frac{1}{3}}$. It is given that f(8) = 5. Find f(x). [4]


 $442.\ 9709_m21_qp_12\ Q:\ 6$

(a)

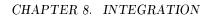
A curve is such that $\frac{dy}{dx} = \frac{6}{(3x-2)^3}$ and A(1, -3) lies on the curve. A point is moving along the curve and at A the y-coordinate of the point is increasing at 3 units per second.

Find the rate of increase at A of the x-coordinate of the point.	[3]
	••••••
)
**	
	••••••
	••••••
	••••••
	•••••

Find the equation of the curve.	[4]
	<u></u>

443. 9709_m21_qp_12 Q: 11

y


A

O

The diagram shows the curve with equation $y = 9(x^{-\frac{1}{2}} - 4x^{-\frac{3}{2}})$. The curve crosses the x-axis at the point A.

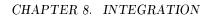
(a)	Find the x-coordinate of A.		[2
		10	
		10	
			••••••
			•••••
			•••••
(b)	Find the equation of the tangent to the curve at A .		[4]
	••		
			•••••
			•••••
			•••••
			•••••

(c)	Find the x-coordinate of the maximum point of the curve.	[2]
		•••••
(d)	Find the area of the region bounded by the curve, the <i>x</i> -axis and the line $x = 9$.	[4
		•••••
		•••••
		•••••

If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.		
······································		

 $444.\ 9709_s21_qp_11\ Q:\ 1$

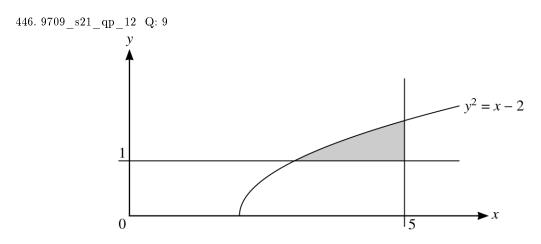
The equation of a curve is such that $\frac{dy}{dx} = \frac{3}{x^4} + 32x^3$. It is given that the curve passes through the point $(\frac{1}{2}, 4)$.
Find the equation of the curve. [4]



 $445.\ 9709_s21_qp_11\ Q:\ 11$

y = i	I the equation of the normal to the curve at the point $(4, 4)$, giving your answer in the for $mx + c$.
••••	
••••	
inc	I the coordinates of the stationary point.
•••••	**

(c)	Determine the nature of the stationary point.
(d)	Find the exact area of the region bounded by the curve, the x-axis and the lines $x = 0$ and $x = 4$. [4]



If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.		
<u> </u>		
29		
- ~ ~		

The diagram shows part of the curve with equation $y^2 = x - 2$ and the lines x = 5 and y = 1. The shaded region enclosed by the curve and the lines is rotated through 360° about the x-axis.

Find the volume obtained.		.79	[6]
		4	
	X		
	Co.		
	3		
	.		
180			

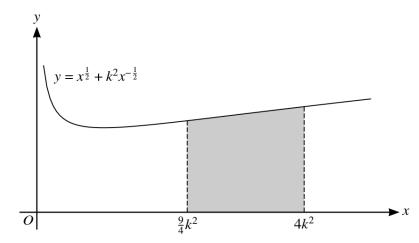
Papa Cambridg	Je 63
	.0
	10
	10
	.00
	201
"	

447. 9709_s21_qp_12 Q: 11

The stati	gradient of a curve is given by $\frac{dy}{dx} = 6(3x - 5)^3 - kx^2$, where k is a constant. The curve has a onary point at $(2, -3.5)$.
(a)	Find the value of k . [2]
(b)	Find the equation of the curve. [4]
	C S
	AQ'0'

(c)	Find $\frac{d^2y}{dx^2}$.	[2]
		400
(d)	Determine the nature of the stationary point at $(2, -3.5)$.	[2]

448. $9709_s21_qp_13$ Q: 1
A curve with equation y = f(x) is such that $f'(x) = 6x^2 - \frac{8}{x^2}$. It is given that the curve passes through the point (2, 7).


(- , ,)	
Find $f(x)$.	[3]
	. 69

 $449.\ 9709_s21_qp_13\ Q:\ 11$

(a)

The diagram shows part of the curve with equation $y = x^{\frac{1}{2}} + k^2 x^{-\frac{1}{2}}$, where k is a positive constant.

Find the coordinates of the minimum point of the curve, giving your answer in terms of k . [4]

The tangent at the point on the curve where $x = 4k^2$ intersects the y-axis at P.

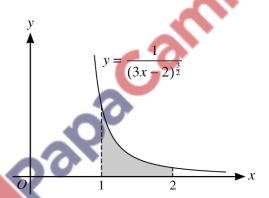
b)	Find the y-coordinate of P in terms of k .	[4]
		0.
		<u> </u>
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x	
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x . Find the area of the shaded region in terms of k .	[3]
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x	[3]
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x. Find the area of the shaded region in terms of k .	[3]
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x . Find the area of the shaded region in terms of k .	[3]
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x. Find the area of the shaded region in terms of k .	[3]
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x. Find the area of the shaded region in terms of k .	[3]
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x. Find the area of the shaded region in terms of k .	[3]
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x. Find the area of the shaded region in terms of k .	[3]
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x. Find the area of the shaded region in terms of k .	[3]
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x. Find the area of the shaded region in terms of k .	[3]
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x. Find the area of the shaded region in terms of k .	[3]
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x. Find the area of the shaded region in terms of k .	[3]
	e shaded region is bounded by the curve, the x-axis and the lines $x = \frac{9}{4}k^2$ and x. Find the area of the shaded region in terms of k .	[3]

must be clearly shown.

 $450.\ 9709_w21_qp_11\ Q:\ 9$

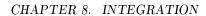
A curve has equation y = f(x), and it is given that $f'(x) = 2x^2 - 7 - \frac{4}{x^2}$.

Given	that $f(1) = -$	$-\frac{1}{3}$, ima i(x).							
										••
•••••	•••••	•••••	••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••
										•••
									2	
							4			••
									7	
								J		
						1				
		••••••	•••••		• • • • • • • • • • • • • • • • • • • •				•••••	•••
•••••	••••••	••••••	•••••	•••••			•••••	••••••	•••••	•••
						·····				
				O						
		•••••)	•••••	•••••	•••••	•••••	•••••	••
			0				••••••	•••••	•••••	••
	1									
44										
		······, [*] ······	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••
	100									
	•••••									••
		•••••	•••••	•••••		•••••			•••••	••
		•••••			••••••	••••••	••••••	•••••	•••••	•••
										-


Find the coordinates of the stationary points on the curve.	[5]
	.Oı
	Ò
Find $f''(x)$.	[1]
76,	
6.0.	
Hence, or otherwise, determine the nature of each of the stationary point	s. [2]

 $451.\ 9709_w21_qp_11\ \ Q:\ 10$

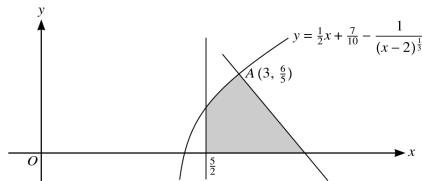
(a)	Find $\int_{1}^{3} \frac{1}{(3x-2)^{\frac{3}{2}}} dx$.	[4]
		5
	. 29	


The diagram shows the curve with equation $y = \frac{1}{(3x-2)^{\frac{3}{2}}}$. The shaded region is bounded by the curve, the *x*-axis and the lines x = 1 and x = 2. The shaded region is rotated through 360° about the *x*-axis.

(b)	Find the volume of revolution.	[4

Pa	paCambridge 64	19
		••
The	normal to the curve at the point $(1, 1)$ crosses the y-axis at the point A.	
(c)	Find the y-coordinate of A .	!]
		••

must be clearly shown.
20
~

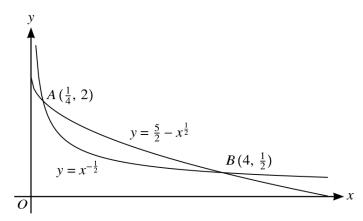


452. 9709_w21_qp_12 Q: 4 A curve is such that $\frac{dy}{dx} = \frac{8}{(3x+2)^2}$. The curve passes through the point $(2, 5\frac{2}{3})$. Find the equation of the curve. [4]

453. 9709_w21_qp_12 Q: 11

The diagram shows the line $x = \frac{5}{2}$, part of the curve $y = \frac{1}{2}x + \frac{7}{10} - \frac{1}{(x-2)^{\frac{1}{3}}}$ and the normal to the curve at the point $A\left(3, \frac{6}{5}\right)$.

(a)	Find the x -coordinate of the point where the normal to the curve meets the x -axis. [5]
	60


(b)

Find the area of the shaded region, giving your answer correct to 2 decimal places.	[6]
	••••
	••••
	••••
<u> </u>	
**	
	••••
	••••
	••••
	••••

 $454.\ 9709_w21_qp_13\ Q:\ 8$

The diagram shows the curves with equations $y = x^{-\frac{1}{2}}$ and $y = \frac{5}{2} - x^{\frac{1}{2}}$. The curves intersect at the points $A(\frac{1}{4}, 2)$ and $B(4, \frac{1}{2})$.

rind the area of the region between the two curves.	[0]
	•
• \	

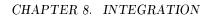
(b)

The normal to the curve $y = x^{-\frac{1}{2}}$ at the point $(1, 1)$ intersects the y-axis at the point $(0, p)$.			
Find the value of p .	[4]		
	.0		
70			
100			

 $455.\ 9709_w21_qp_13\ Q:\ 10$

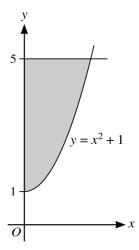
A curve has equation y = f(x) and it is given that

$$f'(x) = (\frac{1}{2}x + k)^{-2} - (1 + k)^{-2},$$


where k is a constant. The curve has a minimum point at x = 2.

(a)	Find $f''(x)$ in terms of k and x , and hence find the set of possible values of k .				
	<i>O</i> -				
		• • • • • • • • • • • • • • • • • • • •			
	NO.				
	00				
It is	now given that $k = -3$ and the minimum point is at $(2, 3\frac{1}{2})$.				
(b)	Find $f(x)$.	[4]			

Pa	paCambridge	
		•••••
		•••••
(c)	Find the coordinates of the other stationary point and determine its nature.	
	29	•••••
		•••••
		•••••
	70	
	-00	•••••
		•••••
		•••••



must be clearly shown.
- 20

 $456.\ 9709_m20_qp_12\ \ Q:\ 3$

The diagram shows part of the curve with equation $y = x^2 + 1$. The shaded region enclosed by the curve, the y-axis and the line y = 5 is rotated through 360° about the y-axis.

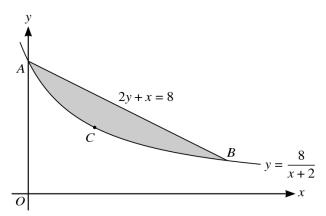
Find the volume obtained.	[4]
	30
	J
20	
100	
* * * * * * * * * * * * * * * * * * * *	

 $457.\ 9709_m20_qp_12\ Q:\ 10$

The gradient of a curve at the point (x, y) is given by	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2(x+3)^{\frac{1}{2}}$	$\frac{1}{2} - x$.	The curve has	a stationary
point at $(a, 14)$, where a is a positive constant.				

(a)	Find the value of a.	[3]
(b)	Determine the nature of the stationary point.	[3]
		•••••
		•••••
		•••••
		•••••
		•••••

(c)


Find the equation of the curve.	[4]
	••••••
	••••••
	••••••
40)	••••••
~~~~	
	••••••
	•••••





(a)

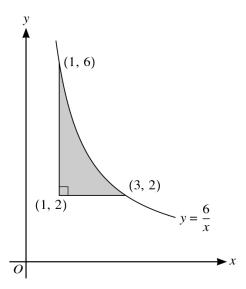
458. 9709_s20_qp_11 Q: 11



The diagram shows part of the curve  $y = \frac{8}{x+2}$  and the line 2y + x = 8, intersecting at points A and B. The point C lies on the curve and the tangent to the curve at C is parallel to AB.

Find, by calculation, the coordinates of $A$ , $B$ and $C$ .	5.6	[6]
	No.	
	<i>O</i> **	
000		
**		






	gn 360° about the $x$ -axis.	ed region, bounded by the curve and the line, is	
•••••			•••
•••••			••••
			•••
•••••			•••
•••••			•••
			2
			mi
•••••			•••
•••••	•••••		•••
•••••			•••
			•••
•••••			•••
		10.	
•••••			•••
		<b>\</b>	
			•••
•••••	······································		•••
•••••			•••
			•••
			•••





459. 9709_s20_qp_12 Q: 8



The diagram shows part of the curve  $y = \frac{6}{x}$ . The points (1, 6) and (3, 2) lie on the curve. The shaded region is bounded by the curve and the lines y = 2 and x = 1.

(a)	Find the volume generated when the shaded region is rotated through 360° about the <i>y</i> -axis. [5]
	60
	0
	**

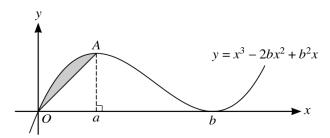




<b>(b)</b>	The tangent to the curve at a point $X$ is parallel to the line $y + 2x = 0$ . Show that $X$ lies on the line $y = 2x$ .






 $460.\ 9709_s20_qp_13\ Q:\ 2$ 

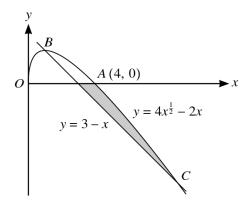
The equation of a curve is such that $\frac{dy}{dx} = 3x^{\frac{1}{2}} - 3x^{-\frac{1}{2}}$ . It is given that the point (4, 7) lies on the curve.		
Find the equation of the curve.	[4]	
	*0	
~~~		
**		

 $461.\ 9709_s20_qp_13\ Q:\ 11$

The diagram shows part of the curve with equation $y = x^3 - 2bx^2 + b^2x$ and the line OA, where A is the maximum point on the curve. The x-coordinate of A is a and the curve has a minimum point at (b, 0), where a and b are positive constants.

(a)	Show that $b = 3a$. [4]	.]
	10	•
	*.0	
		•
	20	•
		•
		•
		•
		•
		•
	•••	
		٠
		•
		•
		•

Show that the area of the shaded region between the line and the curve is ka^* , where k is a fraction to be found. [7]


 $462.\ 9709_w20_qp_11\ \ Q:\ 2$

The equation of a curve is such that $\frac{dy}{dx} = \frac{1}{(x-3)^2} + x$. It is given that the curve passes through the point (2, 7).
Find the equation of the curve. [4]
.0
**

 $463.\ 9709_w20_qp_11\ Q:\ 12$

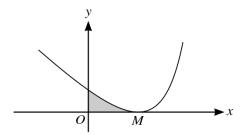
The diagram shows a curve with equation $y = 4x^{\frac{1}{2}} - 2x$ for $x \ge 0$, and a straight line with equation y = 3 - x. The curve crosses the x-axis at A(4, 0) and crosses the straight line at B and C.

(a)	Find, by calculation, the x -coordinates of B and C . [4]
	-70
	A00
.	
(b)	Show that B is a stationary point on the curve. [2]

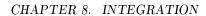
(c)

Find the area of the shaded region.	[6]
	.0
	0
C ^o	
~0	
VO.0.	
**	

 $464.\ 9709_w20_qp_12\ Q:\ 7$


	1	3
The point (4, 7) lies on the curve $y = f(x)$ and it is given that $f'(x) =$	$6x^{-2}$	$-4x^{-2}$
The point $(4, 7)$ has on the curve $y = 1(x)$ and it is given that $1(x) =$	OA	$\neg \lambda$.

(a)	A point moves along the curve in such a way that the x -coordinate is increasing at a constant rate of 0.12 units per second.
	Find the rate of increase of the <i>y</i> -coordinate when $x = 4$. [3]
	*07
	XQ.
-	6.0
(b)	Find the equation of the curve. [4]
	VOC.


 $465.\ 9709_w20_qp_12\ Q:\ 10$

The diagram shows part of the curve $y = \frac{2}{(3-2x)^2} - x$ and its minimum point M, which lies on the x-axis.

(a)	Find expressions for $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\int y dx$.	[6
		9
	70	· • • • • • • • • • • • • • • • • • • •
	00	
	100	
		••••••

		•••••
		· • • • • • • • • • • • • • • • • • • •

	••••••
	••••••
	0.
	70
.	
	•
Find the area of the shaded region bounded by the curve and the coordinat	e axes.
Find the area of the shaded region bounded by the curve and the coordinat	e axes.
Find the area of the shaded region bounded by the curve and the coordinat	e axes.
Find the area of the shaded region bounded by the curve and the coordinat	e axes.
Find the area of the shaded region bounded by the curve and the coordinat	e axes.
Find the area of the shaded region bounded by the curve and the coordinat	e axes.
Find the area of the shaded region bounded by the curve and the coordinat	e axes.
Find the area of the shaded region bounded by the curve and the coordinat	e axes.
Find the area of the shaded region bounded by the curve and the coordinat	e axes.
Find the area of the shaded region bounded by the curve and the coordinat	e axes.
Find the area of the shaded region bounded by the curve and the coordinat	e axes.

 $466.\ 9709_w20_qp_13\ \ Q:\ 2$

The function f is defined by $f(x) = \frac{2}{(x+2)^2}$ for x > -2.

Find $\int_{1}^{\infty} f(x) dx$.]
	3
	29)
The equation of a curve is such that $\frac{dy}{dx} = f($ curve. Find the equation of the curve.	(x). It is given that the point $(-1, -1)$ lies on the following $[$

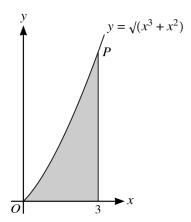
 $467.\ 9709_w20_qp_13\ Q:\ 10$

A curve has equation $y = \frac{1}{k}x^{\frac{1}{2}} + x^{-\frac{1}{2}} + \frac{1}{k^2}$ where x > 0 and k is a positive constant.

(a) It is given that when $x = \frac{1}{4}$, the gradient of the curve is 3. Find the value of k. [4]

(b) It	is given instead that	$\int_{\frac{1}{4}k^2}^{k^2}$	$\left(\frac{1}{k}x^{\frac{1}{2}} + x^{-\frac{1}{2}} + \right.$	$\frac{1}{k^2}\right) \mathrm{d}x = \frac{1}{12}$	3
---------------	-----------------------	-------------------------------	---	---	---

Find the value of k .	[5]
	•••••
	•••••
	. 074
	4 (CA
•	
	~
	•••••
	•••••
A 00	
**	
****	•••••
	•••••
	•••••


468. 9709_m19_qp_12 Q: 2

A curve with equation $y = f(x)$ passes through the points $(0, 2)$ and $(3, -1)$. $f'(x) = kx^2 - 2x$, where k is a constant. Find the value of k .	It is given that [5]
	••••••
	•••••
*.0	
20	••••••

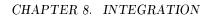
	••••••

 $469.\ 9709_m19_qp_12\ Q:\ 9$

The diagram shows part of the curve with equation $y = \sqrt{(x^3 + x^2)}$. The shaded region is bounded by the curve, the *x*-axis and the line x = 3.

(i)	Find, showing all necessary working, the volume obtained when the shaded region is rotated through 360° about the <i>x</i> -axis. [4]
	10°0

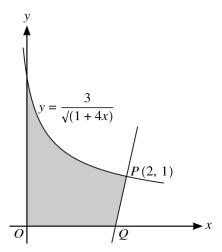
P is the point on the curve with x-coordinate 3. Find the y-coordinate of normal to the curve at P crosses the y-axis.	the point where the
•.(
107	
<i>(***</i>	
••	
	•••••



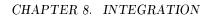
470. 9709_s19_qp_11 Q: 10

A curve for which $\frac{d^2y}{dx^2} = 2x - 5$ has a stationary point at (3, 6).

Find the equation of the curve.	[6]
	<u> </u>
	0
~ ~ ~ ~ ~ ~ ~ ~ ~ ~	



(II)	Find the <i>x</i> -coordinate of the other stationary point on the curve.	[1]
		O,
iii)	Determine the nature of each of the stationary points.	[2]
	**	

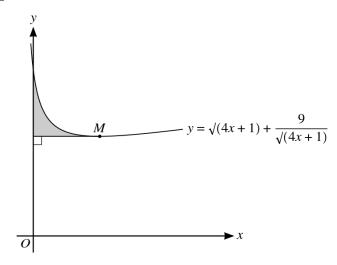

 $471.\ 9709_s19_qp_11\ \ Q:\ 11$

The diagram shows part of the curve $y = \frac{3}{\sqrt{(1+4x)}}$ and a point P(2, 1) lying on the curve. The normal to the curve at P intersects the x-axis at Q.

(i)	Show that the x-coordinate of Q is $\frac{16}{9}$. [5]

(ii)	Find, showing all necessary working, the area of the shaded region.	[6]
)
	-0	
		••••••
		••••••
	**	,
		•••••
		•••••
		•••••

 $472.\ 9709_s19_qp_12\ Q:\ 3$

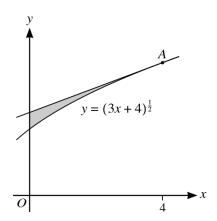

A curve is such that $\frac{dy}{dx} = x^3 - \frac{4}{x^2}$. The point P(2, 9) lies on the curve.

Find the equation of the curve.	Find the equation of the curve.					
Find the equation of the curve.	Find the equation of the curve.	•••••				
Find the equation of the curve.	Find the equation of the curve.					
Find the equation of the curve.	Find the equation of the curve.					
Find the equation of the curve.	Find the equation of the curve.	•••••			•••••	
Find the equation of the curve.	Find the equation of the curve.					
Find the equation of the curve.	Find the equation of the curve.					
Find the equation of the curve.	Find the equation of the curve.	•••••				.0
Find the equation of the curve.	Find the equation of the curve.					10)
Find the equation of the curve.	Find the equation of the curve.					(0)
Find the equation of the curve.	Find the equation of the curve.					•
		Find the equ	nation of the curve.		70	
				-70		
				0		
			A0	7		
		••				
		• • • • • • • • • • • • • • • • • • • •				

 $473.\ 9709_s19_qp_12\ Q:\ 11$

The diagram shows part of the curve $y = \sqrt{(4x+1)} + \frac{9}{\sqrt{(4x+1)}}$ and the minimum point M.

(i)	Find expressions for $\frac{dy}{dx}$ and $\int y dx$. [6]
	Cy


(ii)	Find the coordinates of M .	[3]
		AV
		70)
The	should descion is bounded by the suggest the very and the line through it	M manallal to the wayin
THE	shaded region is bounded by the curve, the y-axis and the line through I	w paramer to the x-axis.
(iii)	Find, showing all necessary working, the area of the shaded region.	[3]
	-50	
	A00	
	*	

(i)

474. 9709_s19_qp_13 Q: 10

The diagram shows part of the curve with equation $y = (3x + 4)^{\frac{1}{2}}$ and the tangent to the curve at the point A. The x-coordinate of A is 4.

Find the equation of the tangent to the curve at A .	[5]
· ·	
	

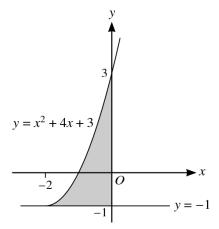
••••
••••
••••
0
•••••
•••••
•••••
•••••
•••••
•••••

at w	bint is moving along the curve. At the point P the y-coordinate is increasing at thich the x-coordinate is increasing. Find the x-coordinate of P .	[3]
•••••		••••••
		2
		••••••
	20	
•••••		•••••••
	20	••••••
		•••••••••

 $475.\ 9709_w19_qp_11\ \ Q:\ 9$

A curve for which $\frac{dy}{dx} = (5x - 1)^{\frac{1}{2}} - 2$	passes through	the point ((2, 3).
--	----------------	-------------	---------

[4]
•••••
<u></u>
•••••
•••••
•••••



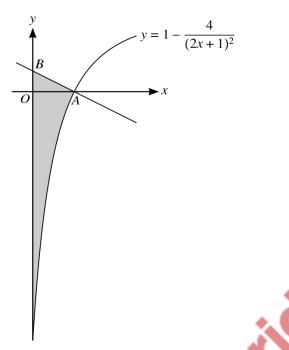
(ii)	Find $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$. [2]
(iii)	Find the coordinates of the stationary point on the curve and, showing all necessary working, determine the nature of this stationary point. [4]

 $476.\ 9709_w19_qp_11\ \ Q:\ 11$

The diagram shows a shaded region bounded by the y-axis, the line y = -1 and the part of the curve $y = x^2 + 4x + 3$ for which $x \ge -2$.

(i)	Express $y = x^2 + 4x + 3$ in the form $y = (x + a)^2 + b$, where a and b are constants. Hence, for $x \ge -2$, express x in terms of y .
	**

Hence, showing all necessary working, find the volume obtained when the shaded region rotated through 360° about the y-axis .	18 [6]
	· • • •
	•••
	· • • •
	•••
	· • • •
	••••
	· • • •
	•••
<u> </u>	· • • •
40	
	•••
	· • • •
	••••
	· • • •
	••••
	•••
	••••
**	
	••••
	•••
	•••



477. 9709_w19_qp_12 Q: 3 A curve is such that $\frac{dy}{dx} = \frac{k}{\sqrt{x}}$, where k is a constant. The points P(1, -1) and Q(4, 4) lie on the curve. Find the equation of the curve.

 $478.\ 9709_w19_qp_12\ Q:\ 10$

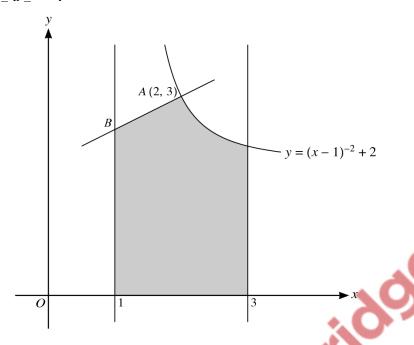
The diagram shows part of the curve $y = 1 - \frac{4}{(2x+1)^2}$. The curve intersects the *x*-axis at *A*. The normal to the curve at *A* intersects the *y*-axis at *B*.

(i)	Obtain expressions for $\frac{dy}{dx}$ and $\int y dx$. [4]

	Find the coordinates of B .	
		••••••
		••••••
		•••••••
		ク
		••••••
11)	Find, showing all necessary working, the area of the shaded region.	[4

 $479.\ 9709_w19_qp_13\ Q:\ 8$

unction f is defined for $x > \frac{1}{2}$ and is such that $f'(x) = 3(2x - 1)^{\frac{1}{2}} - 6$	•
Find the set of values of x for which f is decreasing.	
	.0
~0	
**	


It is now given that $f(1) = -3$. Find $f(x)$.	
	·····
	X
A	
70	
	••••••

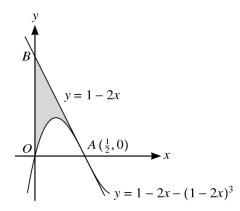
(i)

 $480.\ 9709_w19_qp_13\ Q:\ 11$

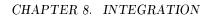
The diagram shows part of the curve $y = (x - 1)^{-2} + 2$, and the lines x = 1 and x = 3. The point A on the curve has coordinates (2, 3). The normal to the curve at A crosses the line x = 1 at B.

Show that the normal AB has equation $y = \frac{1}{2}x + 2$.	[3]
(,

Find, showing all necessary working, the volume of revolution obtained when the is rotated through 360° about the x-axis.	shaded region [8]


481. 9709_m18_qp_12 Q: 1

A curve passes through the point $(4, -6)$ and has an equation is equation of the curve.	for which $\frac{dy}{dx} = x^{-\frac{1}{2}} - 3$. Find the [4]
	()
NO.	
000	


 $482.\ 9709_m18_qp_12\ Q:\ 11$

The diagram shows part of the curve $y = 1 - 2x - (1 - 2x)^3$ intersecting the x-axis at the origin O and at $A(\frac{1}{2}, 0)$. The line AB intersects the y-axis at B and has equation y = 1 - 2x.

(i)	Show that AB is the tangent to the curve at A .	10	[4]
	X		
			•••••
	C		•••••
			•••••
	100		

(ii)	Show that the area of the shaded region can be expressed as $\int_0^{\frac{\pi}{2}} (1-2x)^3 dx$. [2]
	_0
(iii)	Hence, showing all necessary working, find the area of the shaded region. [3]

 $483.\ 9709_s18_qp_11\ \ Q:\ 3$

A aumia ia au ala tlaat	dy	12	The maint (1	1) line on the energy	Find the coordinates of the
A curve is such that	$\frac{d}{dx} = \frac{1}{(2)}$	$(x+1)^2$.	The point (1,	1) lies on the curve.	Find the coordinates of the
point at which the c	urve inter	sects the	<i>x</i> -axis.		Find the coordinates of the [6]
•					
••••••	••••••		• • • • • • • • • • • • • • • • • • • •	•••••	
				•••••	
					. 60
				V	
•••••••			• • • • • • • • • • • • • • • • • • • •		
•••••					
••••••					
•••••				<u></u>	
			0		
	A				
	<u>/</u> .				
				•••••	
***	- 7				

•••••••••	••••••		•••••	••••••	
••••••			• • • • • • • • • • • • • • • • • • • •	•••••	
•••••••					
•••••			• • • • • • • • • • • • • • • • • • • •	•••••	

484. 9709_s18_qp_11 Q: 10

Show that the curve has no stationary points.	
, F	
	O '
Denoting the gradient of the curve by m , find the static	onary value of <i>m</i> and determine its
believing the gradient of the early by m, and the state	shary varue of m and determine his

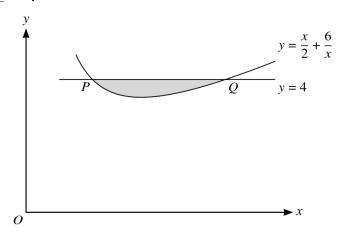
	•••••

(iii)	Showing all necessary working, find the area of the region enclosed by the curve, the x -axis and the line $x = 6$. [4]
	•

 $485.\ 9709_s18_qp_12\ Q:\ 9$

A curve is such that	$\frac{dy}{dx} = \sqrt{(4x+1)}$ and (2, 5) is a point on the curve.
----------------------	---

Find the equation of the	e curve.			
				<u> </u>
	•••••			
		6.0	P	
		O		
		,		
	00			
**				
	· · · · · · · · · · · · · · · · · · ·			
	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	••••••



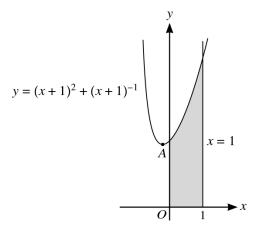
(22)	A point P moves along the curve in such a way that the y -coordinate is increasing at a constant rate of 0.06 units per second. Find the rate of change of the x -coordinate when P passes through $(2, 5)$.
(iii)	$d = d + d^2y + dy$.
	Show that $\frac{d^2y}{dx^2} \times \frac{dy}{dx}$ is constant. [2]
	Show that $\frac{1}{dx^2} \times \frac{1}{dx}$ is constant.

486. 9709_s18_qp_12 Q: 11

The diagram shows part of the curve $y = \frac{x}{2} + \frac{6}{x}$. The line y = 4 intersects the curve at the points P and Q.

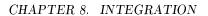
(i)	Show that the tangents to the curve at P and Q meet at a point on the line $y = x$. [6]

through 360° about the x -ax	is. Give your unswel	in terms or w.		[6]
	•••••			
	•••••			······
•••••	•••••			••••••
			,	
	4	0		
		*	•••••	
	40)			
	<u> </u>			
**	7			
	V			
•••••	•••••	•••••	••••••	•••••
			•••••	


 $487.\ 9709_s18_qp_13\ Q:\ 4$

A curve with equation $y = f(x)$ passes through the point $A(3, 1)$ and crosses the y-axis	at B . It is given
A curve with equation $y = f(x)$ passes through the point $A(3, 1)$ and crosses the y-axis a that $f'(x) = (3x - 1)^{-\frac{1}{3}}$. Find the y-coordinate of B .	[6]
	•••••
	0
	—
A 0'	•••••
40)	
	•••••

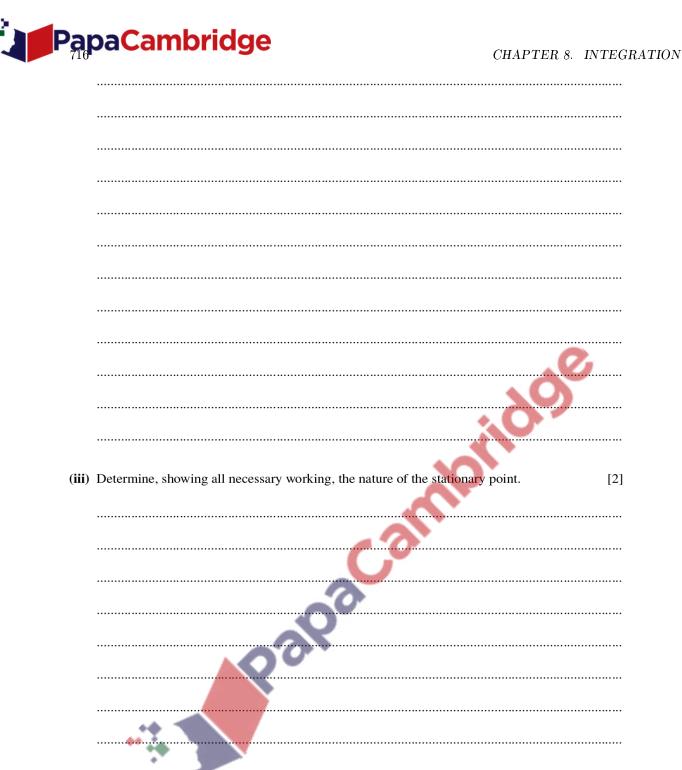
	••••••


 $488.\ 9709_s18_qp_13\ \ Q:\ 11$

The diagram shows part of the curve $y = (x + 1)^2 + (x + 1)^{-1}$ and the line x = 1. The point A is the minimum point on the curve.

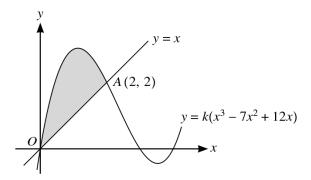
(i)	Show that the x-coordinate of A satisfies the equation $2(x+1)^3 = 1$ and find the exact value of
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} \text{ at } A.$
	60

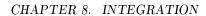
(ii)	Find, showing all necessary working, the volume obtained when the shaded region is rotated through 360° about the <i>x</i> -axis. [6]


 $489.\ 9709_w18_qp_11\ \ Q:\ 6$

A curve has a stationary point at $(3, 9\frac{1}{2})$ and has an equation for which	$\frac{dy}{dx} = ax^2 + a^2x$, where a is a
non-zero constant.	di.

(i)	Find the value of a.	[2]
		••••••
		0.
)
		•••••••
(ii)	Find the equation of the curve.	[4]
		••••••
		••••••

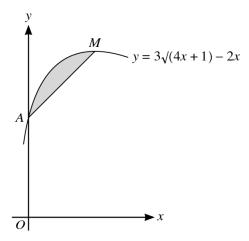



 $490.\ 9709_w18_qp_11\ \ Q:\ 7$

The diagram shows part of the curve with equation $y = k(x^3 - 7x^2 + 12x)$ for some constant k. The curve intersects the line y = x at the origin O and at the point A(2, 2).

(1)	Find the value of κ .
(ii)	Verify that the curve meets the line $y = x$ again when $x = 5$. [2]
	••

Find, showing all necessary working, the area of the shaded region.	[5]
	•••••
	•••••
	•••••
	100
	
	/ /
	••••••••••••
100°	•••••
•	
··········	•••••
	•••••


 $491.\ 9709_w18_qp_12\ Q:\ 2$

Showing all necessary working, find $\int_{1}^{4} (\sqrt{x})^{2} dx$	$x + \frac{2}{\sqrt{x}} dx$. [4]	4]
		•••
	~	
	40	•••
		•••
	The state of the s	
	60	•••
	0	
	<u></u>	
		•••
		•••
		•••
		•••

 $492.\ 9709_w18_qp_12\ Q:\ 11$

The diagram shows part of the curve $y = 3\sqrt{(4x+1)} - 2x$. The curve crosses the y-axis at A and the stationary point on the curve is M.

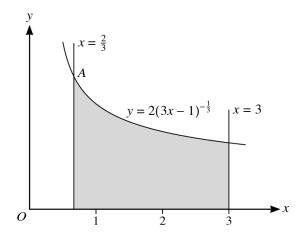
(i)	Obtain expressions for $\frac{dy}{dx}$ and $\int y dx$. [5]

(ii)	Find the coordinates of M .	[3]
iii)	Find, showing all necessary working, the area of the shaded region.	[4]
()	and the state of t	[.]
		•••••

493. 9709_w18_qp_13 Q: 8

A curve passes through (0, 11) and has an equation	for which $\frac{dy}{dx} = ax^2 + bx - 4$, where a and b are
constants.	ďχ

Find the equation of the curve in terms of a and b .	[3]
	0
	0)
40	
•	•••••
	•••••

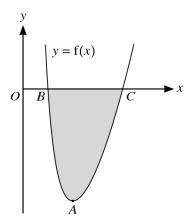


				•••••				•••••		•••••
•••••	•••••	· • • • • • • • • • • • • • • • • • • •		•••••		•••••		•••••	••••••	
								•••••		
									-	C
•••••	•••••			•••••	••••••	•	••••••			
•••••	•••••			•••••		•••••		***		
							\mathcal{N}) <u> </u>		
) ;		
					انشا					
•••••	•••••			•••••			• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••
								•••••		
					U '					
				X						
			O'							
				•••••						
	₩ ◀		7	•••••		•••••		•••••	••••••	
	t		· · · · · · · · · · · · · · · · · · ·							
•••••	•••••			•••••					••••••	•••••

 $494.\ 9709_w18_qp_13\ Q:\ 10$

The diagram shows part of the curve $y = 2(3x - 1)^{-\frac{1}{3}}$ and the lines $x = \frac{2}{3}$ and x = 3. The curve and the line $x = \frac{2}{3}$ intersect at the point A.

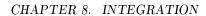
(i)	Find, showing all necessary working, the volume obtained when the shaded region is rotated
	through 360° about the x -axis. [5]
	70
	<u>/0</u>
	500
	•



			•••••	•••••					
•••••		•••••	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	
•••••		••••••	•••••	•••••		•••••		• • • • • • • • • • • • • • • • • • • •	
									0
•••••		•••••		•••••		•••••			
								~ (
•••••	•••••••	••••••	••••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		
							•		
					4				
•••••			•••••		•			• • • • • • • • • • • • • • • • • • • •	
				-					
•••••	•••••	•••••	•••••		·	•••••		• • • • • • • • • • • • • • • • • • • •	•••••
				1					
•••••	•••••	•••••		_	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	
			-57						
•••••	•••••				•••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	**								
			,						
			ř						
			•••••						
•••••		•••••		•••••	•••••	•••••			
•••••	•••••	•••••	•••••	•••••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

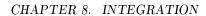
 $495.\ 9709_m17_qp_12\ Q:\ 10$

The diagram shows the curve y = f(x) defined for x > 0. The curve has a minimum point at A and crosses the x-axis at B and C. It is given that $\frac{dy}{dx} = 2x - \frac{2}{x^3}$ and that the curve passes through the point $\left(4, \frac{189}{16}\right)$.


(i)	Find the <i>x</i> -coordinate of <i>A</i> .	dio	[2]
	70		
(ii)	Find $f(x)$.		[3]

****	Find the x -coordinates of B and C . [4]
,III <i>)</i>	Find the x -coordinates of B and C .

	• • • • • • • • • • • • • • • • • • • •
	. 600
	· · · · · · · · · · · · · · · · · · ·

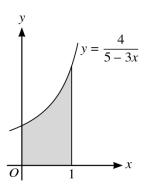


496. 9709_s17_qp_11 Q: 7

A curve for which $\frac{dy}{dx} = 7 - x^2 - 6$	x passes through the point $(3, -10)$
---	---------------------------------------

(i)	Find the equation of the curve.	[3]
		•••••
		•••••

	XO'	
		•••••
		•••••
		•••••
		•••••
		•••••

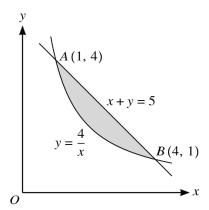


Express , x	6x in the form $a - (x)$, ,		
•••••				••••••
				••••••
•••••				7
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••		••••••
		4		
			()	
			<i>lo,</i>	
Find the set of va	lues of x for which the	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which the	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which th	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which th	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which th	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which th	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which th	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which th	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which th	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which th	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which th	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which the	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which th	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which the	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which th	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which th	ne gradient of the curve i	s positive.	
Find the set of va	lues of x for which th	ne gradient of the curve i	s positive.	

 $497.\ 9709_s17_qp_11\ Q:\ 10$

The diagram shows part of the curve $y = \frac{4}{5-3x}$.

(i)	Find the equation of the normal to the curve at the point where $x = 1$ in the form $y = mx + c$ where m and c are constants.
	407
	70
	•


The shaded region is bounded by the curve, the coordinate axes and the line x = 1.

Find, showing all necessary working, the volume obtained when this through 360° about the x-axis.	[5
NO.	
X 🔾 🔾	
10	
· · · · · · · · · · · · · · · · · · ·	

498. 9709_s17_qp_12 Q: 6

The diagram shows the straight line $x + y = 5$ intersecting the curve $y = \frac{4}{x}$ at the points $A(1, 4)$ and
B(4, 1). Find, showing all necessary working, the volume obtained when the shaded region is rotated through 360° about the x-axis.
anough 500 about the n anis.
10,
100

CHAPTER 8. INTEGRATION

 $499.\ 9709_s17_qp_13\ \ Q:\ 10$

(a)

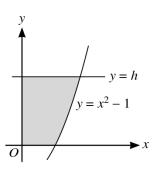
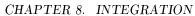
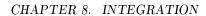



Fig. 1

Fig. 1 shows part of the curve $y = x^2 - 1$ and the line y = h, where h is a constant.

(i)	The shaded region is rotated through 360° about the y-axis . revolution, V , is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$.	Show	that	the	volum	e of [3]
						•••••
	V	"	•	•••••	••••••	•••••
	-0°					
	100					
(ii)	Find, showing all necessary working, the area of the shaded region.	on who	en <i>h</i> =	= 3.		[4]
				•••••		•••••
			•••••	•••••		•••••
		•••••		•••••	•••••	•••••
			•••••	•••••		•••••
			•••••	•••••		•••••
		•••••		•••••	•••••	•••••

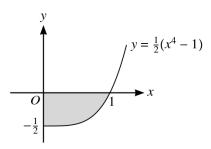
Pa	oaCambridge CHAPTER 8. INTEG
(b)	
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{ cm}$, the volume, $V \text{ cm}^3$, of water is given by $V = \pi(\frac{1}{2}h^2 + h)$. Water is poured into the bowl
	at a constant rate of 2 cm ³ s ⁻¹ . Find the rate, in cm s ⁻¹ , at which the height of the water level is increasing when the height of the water level is 3 cm. [4]



500	9709	c17	an	12	Ω	11
auu.	9709	SI	qp	13	W:	11

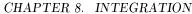
The function f is defined for $x \ge 0$.	It is given that f has a minimum value when $x = 2$ and that
$f''(x) = (4x+1)^{-\frac{1}{2}}.$	

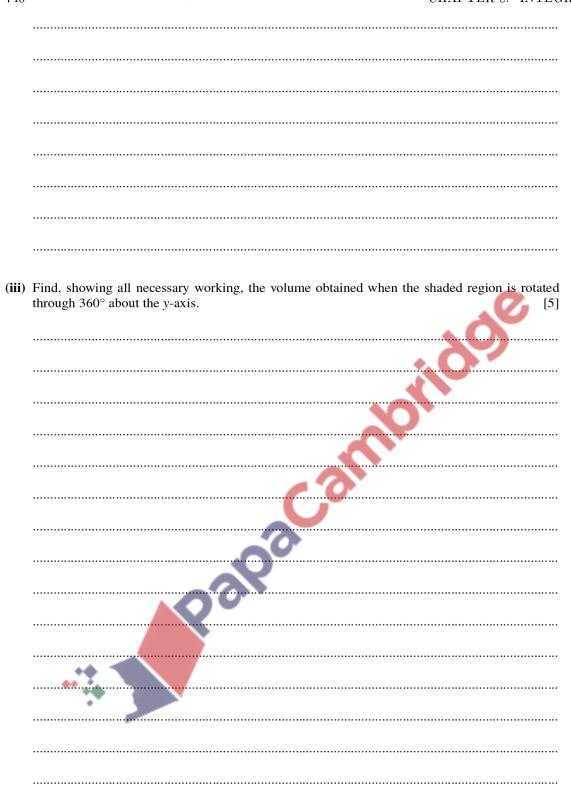
(i)	Find $f'(x)$.
It is	s now given that $f''(0)$, $f'(0)$ and $f(0)$ are the first three terms respectively of an arithmetic gression.
	Find the value of $f(0)$. [3]



	AU
	463
	•
	,
~0.	
40)	

	•••••
	•••••
	•••••

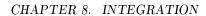

 $501.\ 9709_w17_qp_11\ Q:\ 10$



The diagram shows part of the curve $y = \frac{1}{2}(x^4 - 1)$, defined for $x \ge 0$.

) Find, showing all necessary working, the area of the shaded region.	[3
	, O
<u> </u>	0)
*C	,
) Find, showing all necessary working, the volume obtained when the shaded r through 360° about the <i>x</i> -axis.	egion is rotat
•••	
	•••••

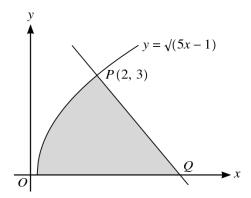
PapaCambridge



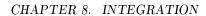
502. 9709_w17_qp_12 Q: 8

A curve is such that $\frac{dy}{dx} = -x^2 + 5x - 4$.

	Find the x-coordinate of each	of the stationary points of the curve.	[2]
			40
			·
			· · · · · · · · · · · · · · · · · · ·
			•
(ii)	Obtain an expression for $\frac{d^2y}{dx^2}$	$\frac{\sqrt{2}}{2}$ and hence or otherwise find the nature of each	
	$\mathrm{d}x^2$	and hence of otherwise find the nature of ea	ach of the stationary
	points. dx^2	and hence of otherwise find the flattice of or	ach of the stationary [3]
	points. dx^2	and hence of others. That the flatture of each	[3]
	points.	and hence of otherwise find the flattare of or	[3]
	points.	and hence of one of the hadder of the	[3]
	points.		[3]

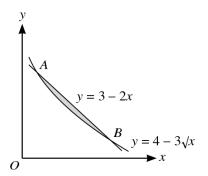


•••••		••••
•••••		••••
		2
		1
•••••		• • • • • • • • • • • • • • • • • • • •
		• • • •
•••••		••••
	47	
•••••		••••
		••••
•••••		• • • • •
	**	
•••••	•••••	• • • • •
•••••		• • • •

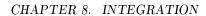

 $503.\ 9709_w17_qp_12\ Q:\ 10$

The diagram shows part of the curve $y = \sqrt{(5x-1)}$ and the normal to the curve at the point P(2, 3). This normal meets the *x*-axis at Q.

(i)	Find the equation of the normal at P .	[4]
		10)
		40
		F
	· · · · · · · · · · · · · · · · · · ·	
	-0	



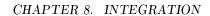
(ii)	Find, showing all necessary working, the area of the shaded region. [7


 $504.\ 9709_w17_qp_13\ Q:\ 8$

The diagram shows parts of the graphs of y = 3 - 2x and $y = 4 - 3\sqrt{x}$ intersecting at points A and B.

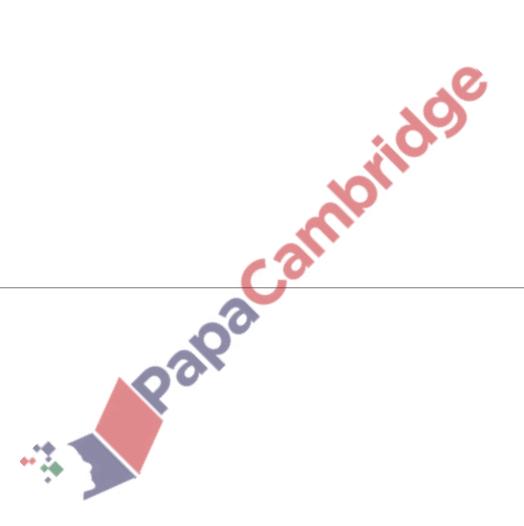
(i)	Find by calculation the x -coordinates of A and B .	[3]
		0.
	•	(0)
	• • • • • • • • • • • • • • • • • • • •	3
	120	

showing all necessary working, the area of the shaded region.	
	•••••
	.01
4	
VO.0.	••••••
	•••••

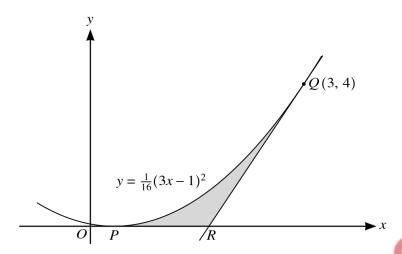


 $505.\ 9709_w17_qp_13\ Q:\ 10$

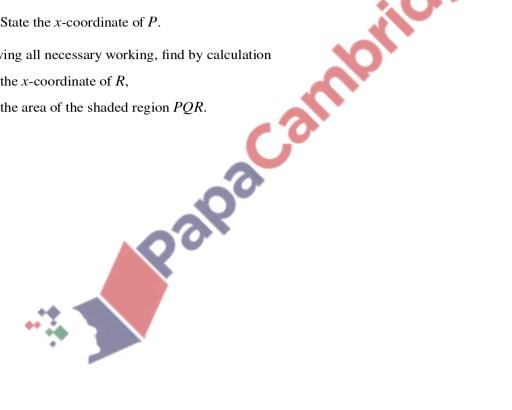
A cu	arve has equation $y = f(x)$ and it is given that $f'(x) = ax^2 + bx$, where a and b are positive constants.
(i)	Find, in terms of a and b , the non-zero value of x for which the curve has a stationary point and determine, showing all necessary working, the nature of the stationary point. [3]
	10.0


)	It is now given that the curve has a stationary point at $(-2, -3)$ and that the gradient of the curve at $x = 1$ is 9. Find $f(x)$.
	<u> </u>
	••

506. 9709_m16_qp_12 Q: 2


A curve for which $\frac{dy}{dx} = 3x^2 - \frac{2}{x^3}$ passes through (-1, 3). Find the equation of the curve. [4]

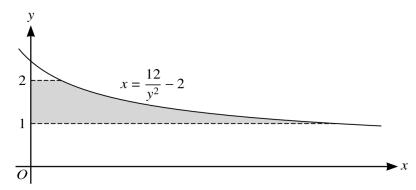
507. 9709_m16_qp_12 Q: 10



The diagram shows part of the curve $y = \frac{1}{16}(3x - 1)^2$, which touches the *x*-axis at the point *P*. The point Q(3, 4) lies on the curve and the tangent to the curve at Q(3, 4) crosses the *x*-axis at *R*.

Showing all necessary working, find by calculation

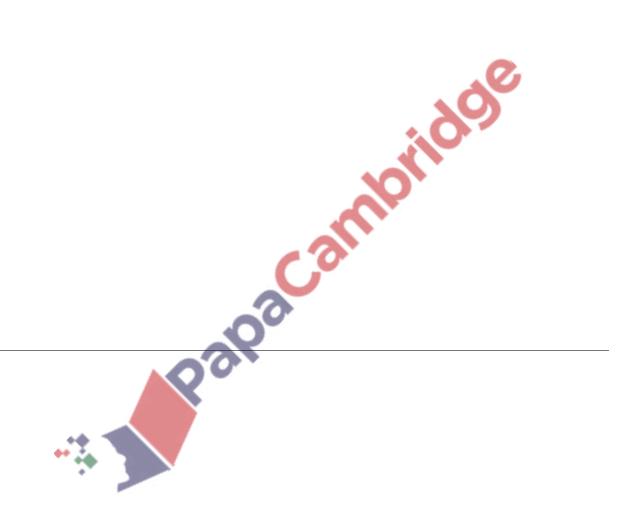
(ii) the x-coordinate of
$$R$$
, [5]


(iii) the area of the shaded region PQR. [6]

508. 9709_s16_qp_11 Q: 3

The diagram shows part of the curve $x = \frac{12}{y^2} - 2$. The shaded region is bounded by the curve, the y-axis and the lines y = 1 and y = 2. Showing all necessary working, find the volume, in terms of π , when this shaded region is rotated through 360° about the y-axis. [5]

 $509.\ 9709_s16_qp_11\ \ Q:\ 4$

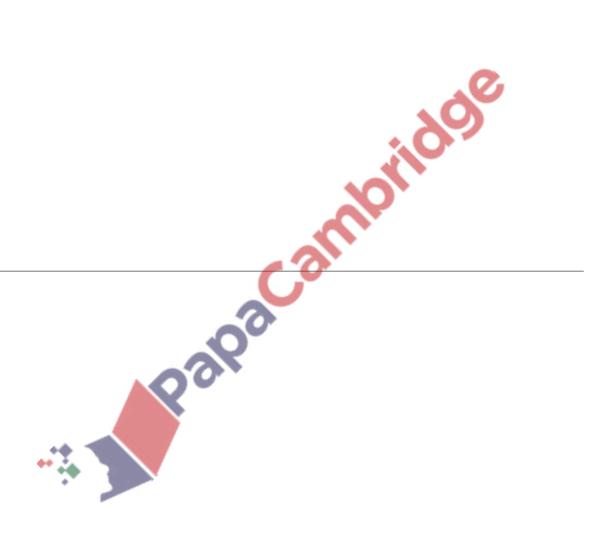

A curve is such that $\frac{dy}{dx} = 2 - 8(3x + 4)^{-\frac{1}{2}}$.

(i) A point *P* moves along the curve in such a way that the *x*-coordinate is increasing at a constant rate of 0.3 units per second. Find the rate of change of the *y*-coordinate as *P* crosses the *y*-axis.

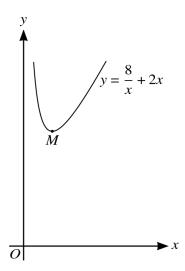
[2]

The curve intersects the y-axis where $y = \frac{4}{3}$.

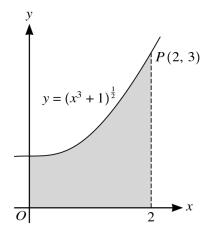
(ii) Find the equation of the curve. [4]



 $510.9709_s16_qp_12~Q:2$


A curve is such that $\frac{dy}{dx} = \frac{8}{(5-2x)^2}$. Given that the curve passes through (2, 7), find the equation of the curve.

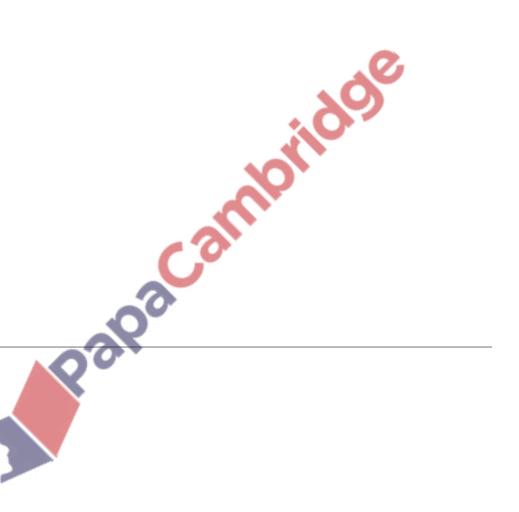
511. 9709_s16_qp_12 Q: 10


The diagram shows the part of the curve $y = \frac{8}{x} + 2x$ for x > 0, and the minimum point M.

- (i) Find expressions for $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and $\int y^2 dx$. [5]
- (ii) Find the coordinates of M and determine the coordinates and nature of the stationary point on the part of the curve for which x < 0. [5]
- (iii) Find the volume obtained when the region bounded by the curve, the x-axis and the lines x = 1 and x = 2 is rotated through 360° about the x-axis.

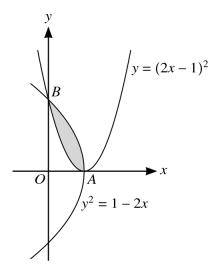
512. $9709 _s16 _qp_13 Q: 2$

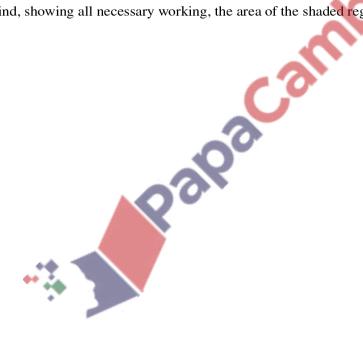
The diagram shows part of the curve $y = (x^3 + 1)^{\frac{1}{2}}$ and the point P(2, 3) lying on the curve. Find, showing all necessary working, the volume obtained when the shaded region is rotated through 360° about the x-axis. [4]



A curve is such that $\frac{dy}{dx} = 6x^2 + \frac{k}{x^3}$ and passes through the point P(1, 9). The gradient of the curve at P is 2.

(i) Find the value of the constant k. [1]

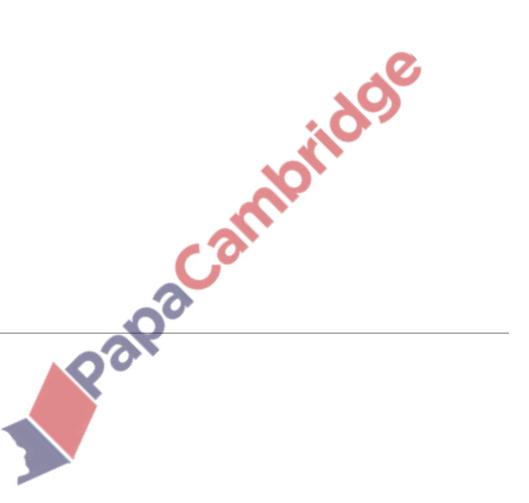

(ii) Find the equation of the curve. [4]


 $514.9709_{\mathrm{w}}16_{\mathrm{qp}}11 \ \mathrm{Q:} 7$

The diagram shows parts of the curves $y = (2x - 1)^2$ and $y^2 = 1 - 2x$, intersecting at points A and B.

(i) State the coordinates of A. [1]

(ii) Find, showing all necessary working, the area of the shaded region. [6]

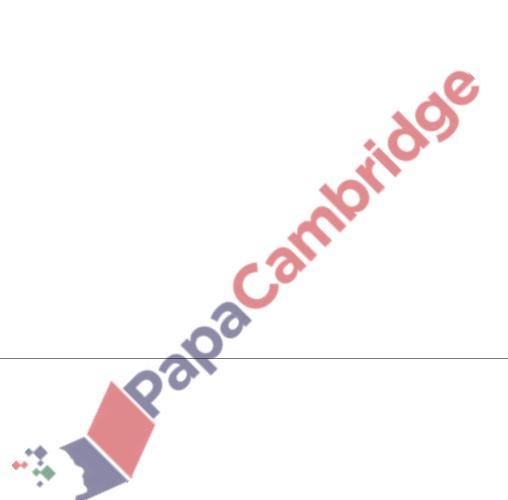


 $515.\ 9709_w16_qp_11\ \ Q:\ 10$

A curve has equation y = f(x) and it is given that $f'(x) = 3x^{\frac{1}{2}} - 2x^{-\frac{1}{2}}$. The point A is the only point on the curve at which the gradient is -1.

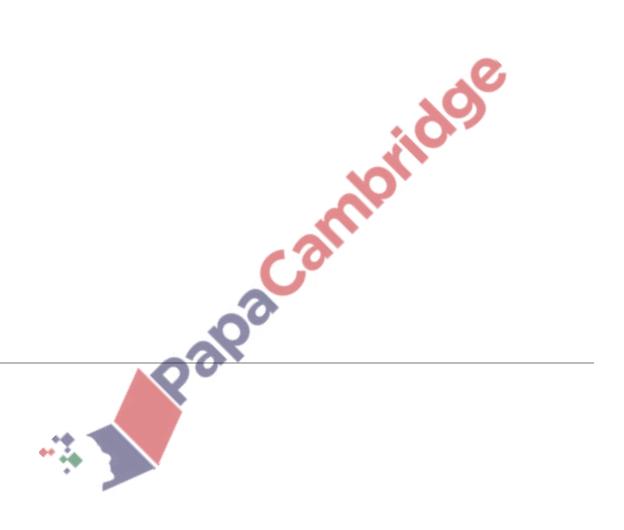
(i) Find the *x*-coordinate of *A*. [3]

(ii) Given that the curve also passes through the point (4, 10), find the y-coordinate of A, giving your answer as a fraction. [6]



 $516.\ 9709_w16_qp_12\ Q{:}\ 1$

A curve is such that $\frac{dy}{dx} = \frac{8}{\sqrt{(4x+1)}}$. The point (2, 5) lies on the curve. Find the equation of the curve.

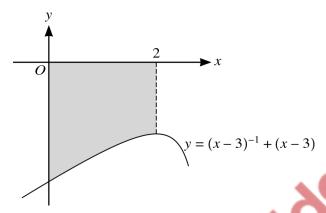

517. $9709_{\mathbf{w}}16_{\mathbf{q}}p_{\mathbf{1}}3$ Q: 10

A curve is such that $\frac{dy}{dx} = \frac{2}{a}x^{-\frac{1}{2}} + ax^{-\frac{3}{2}}$, where a is a positive constant. The point $A(a^2, 3)$ lies on the curve. Find, in terms of a,

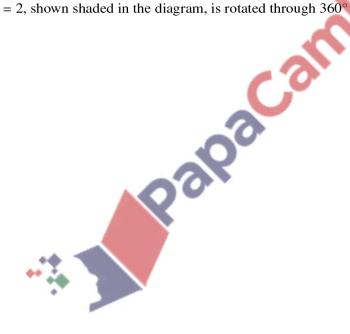
- (i) the equation of the tangent to the curve at A, simplifying your answer, [3]
- (ii) the equation of the curve. [4]

It is now given that B(16, 8) also lies on the curve.

(iii) Find the value of a and, using this value, find the distance AB. [5]

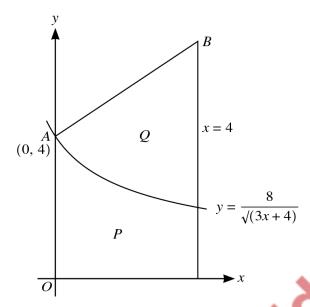


 $518.9709_{w}16_{q}p_{1}3 Q: 11$


A curve has equation $y = (kx - 3)^{-1} + (kx - 3)$, where k is a non-zero constant.

(i) Find the *x*-coordinates of the stationary points in terms of *k*, and determine the nature of each stationary point, justifying your answers. [7]

(ii)


The diagram shows part of the curve for the case when k = 1. Showing all necessary working, find the volume obtained when the region between the curve, the x-axis, the y-axis and the line x = 2, shown shaded in the diagram, is rotated through 360° about the x-axis. [5]

519. $9709_s15_qp_11$ Q: 10

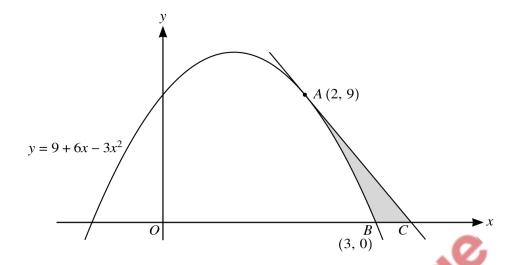
The diagram shows part of the curve $y = \frac{8}{\sqrt{(3x+4)}}$. The curve intersects the y-axis at A(0, 4). The normal to the curve at A intersects the line x = 4 at the point B.

- (i) Find the coordinates of B. [5]
- (ii) Show, with all necessary working, that the areas of the regions marked P and Q are equal. [6]

 $520.\ 9709_s15_qp_12\ Q:\ 10$

The equation of a curve is $y = \frac{4}{2x - 1}$.

- (i) Find, showing all necessary working, the volume obtained when the region bounded by the curve, the x-axis and the lines x = 1 and x = 2 is rotated through 360° about the x-axis. [4]
- (ii) Given that the line 2y = x + c is a normal to the curve, find the possible values of the constant c.


 $521.\ 9709_s15_qp_13\ Q:\ 2$

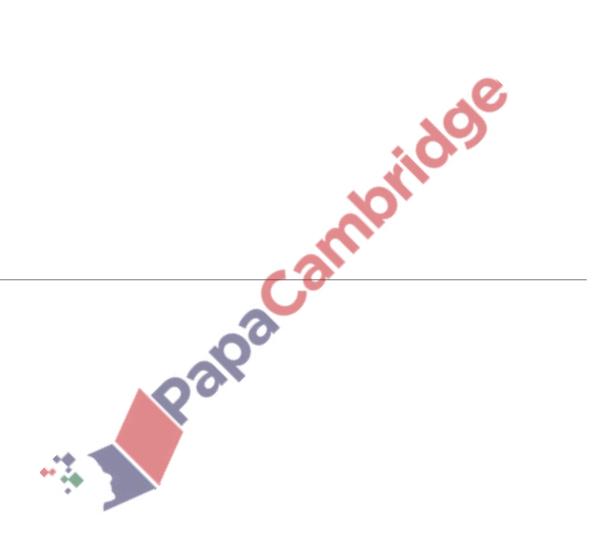
A curve is such that $\frac{dy}{dx} = (2x+1)^{\frac{1}{2}}$ and the point (4, 7) lies on the curve. Find the equation of the curve.


 $522.\ 9709_s15_qp_13\ Q:\ 10$

Points A(2, 9) and B(3, 0) lie on the curve $y = 9 + 6x - 3x^2$, as shown in the diagram. The tangent at A intersects the x-axis at C. Showing all necessary working,

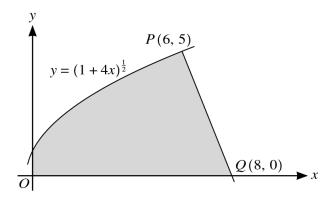
(i) find the equation of the tangent AC and hence find the x-coordinate of C, [4]

(ii) find the area of the shaded region ABC. [5]



 $523.\ 9709_w15_qp_11\ \ Q:\ 2$

The function f is such that $f'(x) = 3x^2 - 7$ and f(3) = 5. Find f(x).

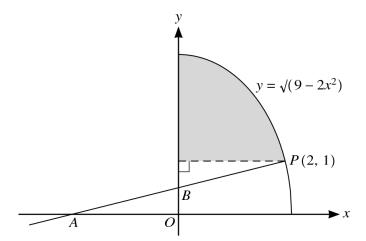

[3]

 $524.\ 9709_w15_qp_11\ Q:\ 11$

The diagram shows part of the curve $y = (1 + 4x)^{\frac{1}{2}}$ and a point P(6, 5) lying on the curve. The line PQ intersects the x-axis at Q(8, 0).

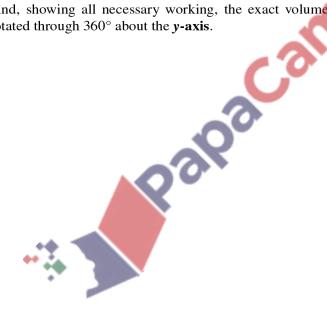
(i) Show that PQ is a normal to the curve.

[5]


(ii) Find, showing all necessary working, the exact volume of revolution obtained when the shaded region is rotated through 360° about the x-axis. [7]

[In part (ii) you may find it useful to apply the fact that the volume, V, of a cone of base radius r and vertical height h, is given by $V = \frac{1}{3}\pi r^2 h$.]

 $525.9709_{w15}_{qp}_{12}$ Q: 10

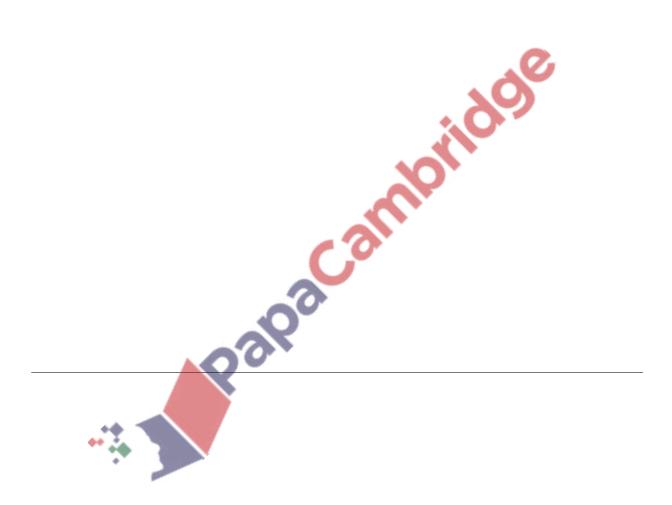

The diagram shows part of the curve $y = \sqrt{(9-2x^2)}$. The point P(2, 1) lies on the curve and the normal to the curve at P intersects the x-axis at A and the y-axis at B.

(i) Show that B is the mid-point of AP.

[6]

The shaded region is bounded by the curve, the y-axis and the line y =

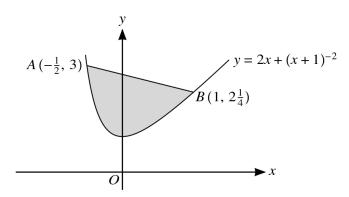
(ii) Find, showing all necessary working, the exact volume obtained when the shaded region is rotated through 360° about the **y-axis**.



526. 9709 w15 qp 13 Q: 9

A curve passes through the point A(4, 6) and is such that $\frac{dy}{dx} = 1 + 2x^{-\frac{1}{2}}$. A point P is moving along the curve in such a way that the x-coordinate of P is increasing at a constant rate of 3 units per minute.

- (i) Find the rate at which the y-coordinate of P is increasing when P is at A. [3]
- (ii) Find the equation of the curve. [3]
- (iii) The tangent to the curve at A crosses the x-axis at B and the normal to the curve at A crosses the x-axis at C. Find the area of triangle ABC. [5]



 $527.\ 9709_w15_qp_13\ Q:\ 10$

The function f is defined by $f(x) = 2x + (x+1)^{-2}$ for x > -1.

(i) Find f'(x) and f''(x) and hence verify that the function f has a minimum value at x = 0. [4]

The points $A(-\frac{1}{2}, 3)$ and $B(1, 2\frac{1}{4})$ lie on the curve $y = 2x + (x+1)^{-2}$, as shown in the diagram.

(ii) Find the distance AB. [2]

(iii) Find, showing all necessary working, the area of the shaded region. [6]

